

CENTRE NATIONAL D'ÉTUDES SPATIALES

Real-time PPP with undifferenced integer ambiguity resolution, experimental results

D. Laurichesse, F. Mercier CNES Orbitography

COES Undifferenced ambiguity resolution background

- Identification of differential satellites biases
 - Gabor & Nerem (1999), Ge & Al (2007)

CNES Method (ION GNSS 2007, ENC-GNSS 2008, ION ITM 2008/2009, Navigation 2009)

- Satellites biases are absorbed in the clocks
- Applications to PPP, LEO POD, Real Time 'integer' PPP, CNES/CLS IGS analysis center (GRG)
- Collins (NrCan, ION ITM 2008) proposes a similar approach
 - The 'decoupled clock model', generalization of the CNES method
- Geng method (University of Nottingham, ION GNSS 2008)
 - Identification of UHD (undifferenced hardware delays)
- Similar concepts (Mervart, Rocken, GPS Solutions, ION GNSS 2008)
 - Single difference hardware delays and measurements
- Blewitt (AGU 2009, NBMG & JPL)
 - 'carrier range' concept, biases are estimated after a double differenced network solution

Wide-Lane (ionosphere-free, geometry-free combination, 70 cm wavelength)

EGU Vienna 2010 – D. Laurichesse

COLES Benefits of separate phase and pseudo-range clocks

SP3 clocks: combine pseudo-range and phase observations

 Pseudo-range clocks smoothed by phase = phase clocks aligned on pseudo-range

$$\overline{h}_P, \operatorname{cov}(\overline{h}_P) \approx 5cm$$

Integer ambiguity model : separate phase and pseudo-range clocks

$$h_c, h_p - h_c$$
 $\begin{array}{c} \operatorname{cov}(h_c) \approx 1 \,\mathrm{cm}, \\ \operatorname{cov}(h_p - h_c) \approx 5 \,\mathrm{cm} \end{array}$

- Reconstruction of SP3 clocks from separate clocks is possible (backward compatibility)
 - The error on the reconstructed clock is not better than the SP3 one

$$\overline{h}_p = h_c + \left(h_p - h_c\right)$$

We use the phase clock as the reference

- more accurate (pseudo-range measurements are not involved in their computation)
- phase models are better known
- 'integer' property

```
EGU Vienna 2010 – D. Laurichesse
```


Application to real-time integer-PPP Test in replay mode

Impact of fixed ambiguities (Kinematic positioning, replay mode) ION ITM 2009

standard PPP with floating ambiguities ~10 cm RMS

PPP with integer fixed orbits and clocks ~2 cm RMS

CCOES Real-time network of stations

- NTRIP (use of GFZ caster, Courtesy Georg Weber)
- 40 stations
- 1 day of measurements

Real-time phase clock solution accuracy

Pure phase clocks

 h_{c}

Comparison with IGS finals:

- One common offset removed per epoch
- One constant offset removed per continuous clock segment (user-side phase ambiguity estimation)
- Corrected from radial orbits differences

Errors ~ 1 cm (0.03 ns)

- Much better than SP3-like clocks
- Clocks have integer property
- Availability 95 %
- Global orbits/clocks computation is feasible with current Real Time IGS measurements streams

Phase clock error

Cones **Real-time PPP with local network demonstrator**

- System operational since December 2009
- Processes data from a local network of 8 Euref stations
- Adjust position in real-time of a fixed user station GTL1 (Septentrio GeneRx)

Longitude (°)

EGU Vienna 2010 – D. Laurichesse

Real time user position error with integer ambiguities (GTL1)

- Comparisons to a reference position
- 1 cm RMS horizontal accuracy
- 3 cm RMS vertical accuracy

Advantages and drawbacks of the method

	PPP 2-frequencies	RTK 1 or 2 frequencies	CNES Integer PPP 2-frequencies
Geometry	Global	Local (< 50 km)	Global
Convergence time (TTFF)	Convergence : < 30 cm Kick start: 1 mn static: 15 mn dynamic: 30 mn	Convergence : ~ 1 cm 1-5 mn	Convergence : ~ 1 cm Kick start: 1 mn static: 30 mn dynamic: 90 mn
Horizontal precision	10-50 cm	~ 1 cm	~ 1 cm

• The method is operationally equivalent to PPP but with the precision of RTK (1 cm vs. 10 cm)

• Potential application to earthquake monitoring, oil rigs positioning, RTK base station positioning ...

Conclusion and future work

Worldwide orbits and clocks has been computed in real-time using the current RTIGS network and NTRIP tools, results are promising

A demonstrator has been working since December 2009 in 'limited' mode

- Server side: works on a regional network (European-wide)
- User side: static receiver (but processed in Kinematic mode)
- Centimeter accuracy positioning precision

Perspectives for 2010

- Extension to the global network
- Proposal to contribute to the RTIGS project
 - As a real-time provider of measurements from CNES stations
 - As a real-time analysis center
- Improvements of the user-side algorithms
 - Full Kinematic mode processing
 - Robustness enhancements (for moving receivers in constrained environments for example)